A Dyadic Riemann hypothesis
When replacing the circle group with the dyadic group of integers, the Riemann zeta function becomes an explicit entire function for which all roots are on the imaginary axes. This is the Dyadic Riemann Hypothesis.
When replacing the circle group with the dyadic group of integers, the Riemann zeta function becomes an explicit entire function for which all roots are on the imaginary axes. This is the Dyadic Riemann Hypothesis.